Mesoscopic conductors:

From quantum transport to quantum thermodynamics

Géraldine Haack

Department of Applied Physics GAP, University of Geneva

LQSS, 16th of October 2019

- *L* : Geometrical length of the system
- *l_e* : Elastic scattering length
 (typical length between two scattering events, without energy exchange)
- *l_{in}*: Inelastic scattering length
 (typical length over which an energy kT has been exchanged)
- l_{ϕ} : Quantum phase-coherence length

- *L* : Geometrical length of the system
- *l_e* : Elastic scattering length
 (typical length between two scattering events, without energy exchange)
- *l_{in}* : Inelastic scattering length
 (typical length over which an energy kT has been exchanged)
- l_{ϕ} : Quantum phase-coherence length

- L : Geometrical length of the system
- *l_e* : Elastic scattering length
 (typical length between two scattering events, without energy exchange)
- l_{in} : Inelastic scattering length (typical length over which an energy kT has been exchanged)
- l_{ϕ} : Quantum phase-coherence length

Quantum transport

 $l_{\phi} \sim L \leq l_{in}$

 $\begin{array}{ll} \mbox{Ballistic transport:} & l_\phi \sim L \leq l_e \ll l_{in} \\ \mbox{Diffusive transport:} & l_e \leq l_\phi \sim L \ll l_{in} \end{array}$

- *L* : Geometrical length of the system
- *l_e* : Elastic scattering length
 (typical length between two scattering events, without energy exchange)
- *l*_{in} : Inelastic scattering length
 (typical length over which an energy kT has been exchanged)
- l_{ϕ} : Quantum phase-coherence length

Drain

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Drain

Webb et al., PRL 54 (1985)

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Webb et al., PRL 54 (1985)

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Webb et al., PRL 54 (1985)

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Webb et al., PRL 54 (1985)

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Webb et al., PRL 54 (1985)

- Semi-classical approach
- Hamiltonian approaches
 (Green functions, master equations)
 - Scattering-matrix approach

Reservoirs	Leads	Scatterer
At equilibrium	No dissipation	
Fermionic black-body sources	Incoming & outgoing states	
Fermi-Dirac distribution : μ, T	Incoming states @ equilibrium	

Webb et al., PRL 54 (1985)

• Semi-classical approach

Hamiltonian approaches
 (Green functions, master equations)

• Scattering-matrix approach

Reservoirs	Leads	Scatterer
At equilibrium	No dissipation	Characterized by reflection &
Fermionic black-body sources	Incoming & outgoing states	
		Charge conservation
Fermi-Dirac distribution : μ, T	Incoming states @ equilibrium	R + T = 1

Webb et al., PRL 54 (1985)

• Semi-classical approach

Hamiltonian approaches
 (Green functions, master equations)

• Scattering-matrix approach

Scattering-matrix approach

Reservoirs	Leads	Scatterer
At equilibrium	No dissipation	Characterized by reflection &
Fermionic black-body sources	Incoming & outgoing states	
		Charge conservation
Fermi-Dirac distribution : μ, T	Incoming states @ equilibrium	R + T = 1

No interaction, single-particle picture

Lots of analogies with quantum optics -> towards quantum information

Webb et al., PRL 54 (1985)

• Semi-classical approach

Hamiltonian approaches
 (Green functions, master equations)

• Scattering-matrix approach

Scattering-matrix approach

Reservoirs	Leads	Scatterer
At equilibrium	No dissipation	Characterized by reflection &
Fermionic black-body sources	Incoming & outgoing states	
		Charge conservation
Fermi-Dirac distribution : μ, T	Incoming states @ equilibrium	R + T = 1

No interaction, single-particle picture

Lots of analogies with quantum optics -> towards quantum information

Outline

- 1. Introduction to mesoscopic conductors
- 2. Scattering-matrix approach to quantum conduction
- 3. Example of a Aharonov-Bohm ring (quantum transport in presence of a magnetic field)
- 4. Towards quantum thermodynamics (through thermoelectricity)

Books

- Y. Imry "Introduction to mesoscopic physics" (Oxford University Press, 1997)
- S. Datta "Electronic transport in mesoscopic systems" (Cambridge University Press, 1995)
- Yu. V. Nazarov & Ya. M. Blanter "Quantum transport" (Cambridge University Press, 2009)
- K. Behnia "Fundamentals of Thermoelectricity" (Oxford University Press, 2015)

Review articles

- Beenakker , van Houten, Solid State Physics 44, 1 (1991), Quantum Transport in Semiconductor Nanostructures.
- Blanter, Büttiker, Phys. Rep. 336, 1 (2000), Shot Noise in Mesoscopic Conductors.
- Benenti, Casati, Saito, Whitney, Physics Reports, 694, 1 (2017), Fundamental aspects of steady-state conversion of heat to work at the nanoscale.

Lecture notes by M. Büttiker, D. C. Glattli, J. Splettstoesser, A. Jordan