
Quantum Information Theory: Lecture 4

March 20, 2017

1 Bell’s theorem

In the previous lectures, we studied quantum entanglement and some of
its applications for quantum information processing. The counter-intuitive
aspect of this concept was discussed from a qualitative point of view. Here
we formalize this intuition, and present the most striking demonstration
of the nonlocal character of quantum mechanics: the correlations of local
measurements performed on distant entangled particles. Following the ap-
proach initiated by John Bell in 1964, we will see that such correlations are
so strong that they can in fact not be reproduced by any classical means.
Thus we are lead to the conclusion that quantum mechanics is a nonlocal
theory. This is the content of Bell’s celebrated theorem.

1.1 Bell’s inequality

We consider an experiment featuring two distant observers, Alice and Bob.
A source, placed in-between A and B emits pairs of particles, one after the
other. For each pair, one particle from the pair is sent to Alice, the other to
Bob. Alice and Bob have measuring devices, with the help of which they
can perform a measurement on each incoming particle.

In each run of the experiment, both Alice and Bob can choose between
two possible measurements to perform. We denote the choice of measure-
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ment i = 1, 2 for Alice, and j = 1, 2 for Bob. The result of each measurement
is binary. We note it Ai = ±1 for Alice, and Bj = ±1 for Bob.

Let’s imagine now that Alice and Bob run the above experiment many
times. In each round, each observer records which measurement she/he
chose to perform, and which outcome she/he obtained. When the experi-
ment is finished, both observers meet, and compare their results. Surpris-
ingly, they notice that their data is correlated. Say, for instance, when both
observers chose the same measurement, they obtained the same result with
a probability higher than 1/2. Puzzled by this behavior, Alice and Bob try
to find an explanation: how were these correlations generated?

The first explanation that comes to Alice’s mind is that one device influ-
enced the other. Imagine for instance that Alice’s device upon receiving its
input, sent a classical signal to Bob’s device saying which input it received
and which outcome it produced. Bob protests however, noticing that dur-
ing the experiment Alice and Bob were space-like separated. Hence no
classical communication (traveling at the speed of light) would have had
enough time to travel from Alice to Bob. Thus Bob concludes (correctly)
that the observed correlations cannot be explained by a classical signal.

Alice has then another idea. The correlated behavior can certainly be
explained by the fact that A and B performed measurements on a pair of
particles originating from a common source. Hence, the particles may have
a common physical property (for instance they may have the same polar-
ization) which would explain correlations in the measurements. Loosely
speaking, one may imagine that the particles have been ’programmed’ in
the same way. They follow a common strategy.

Now comes the crucial question. Can we test whether the above mech-
anism is able to explain the observed correlations? A priori, this may seem
difficult, since there exist many possible ways to prepare (or to ’program’)
the two particles. How can we be sure to take all possibilities into account?
Remarkably, Bell showed that in any local theory, that is, where the cor-
relations originate from a common program (or a common strategy), the
correlations between distant events must satisfy certain constraints. Impor-
tantly, these constraints, which are formalized as inequalities (hence called
Bell inequalities), are always satisfied in any local model, no matter how
complicated this model is.
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We will see now how to derive such a Bell inequality. Consider again
the above experiment. A possible strategy, denoted λ, consists in attribut-
ing values to the outcomes of each measurement, that is, to define variables
A1 = ±1, A2 = ±1, B1 = ±1, and A2 = ±1. It is easy to see that, no matter
which values we choose, the following quantity:

S(λ) = A1(B1 + B2) + A2(B1 − B2) (1)

takes values S(λ) = ±2. Note that we cannot measure S(λ), since in each
run of the experiment, A and B choose to perform either the first or the
second measurement, but they cannot perform both at the same time.

Nevertheless, what can be measured is the average value of S(λ) over
many runs of the experiment. Indeed, we cannot exclude that the the strat-
egy λ changes in each run, according a distribution ρ(λ). Hence we must
average over λ. We have that

S =
∫

dλρ(λ)S(λ) (2)

where
∫

dλρ(λ) = 1. From equation (1), we get directly the inequality

|S| = |〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉| ≤ 2. (3)

This is Bell’s inequality in its simplest form, which was derived in 1969 by
Clauser, Horne, Shimony, and Holt. This inequality is thus referred to as
the CHSH Bell inequality.

1.2 Bell locality

It is worth discussing in more details the assumptions that lie behind Bell’s
inequality. The main idea that is being tested here, is whether or not the
observed correlations can be explained by a common cause. In order to for-
malize this idea, we introduce a variable λ that is shared between A and B.
Imagine, that in the source, the particles are programmed in a specific man-
ner. For instance, each particle may carry a program that indicates what
outcome will occur for every possible measurements of Alice and Bob. This
program is represented by the classical variable λ, which historically peo-
ple refer to as a local hidden variable. Importantly, λ represents the most
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general classical program. That is, all possible classical strategies are taken
into account here.

Now, it turns out that correlation that can be obtained via a shared vari-
able λ can always be decomposed in a particular way. Consider an experi-
ment as that described in the previous section, where Alice’s measurement
choice is denoted x, and its outcome is a. Similarly, we denote Bob’s mea-
surement choice by y, and its outcome by b. Note that x, y, a, b are not nec-
essarily binary anymore. Then, if the correlations originate from a shared
variable λ, they can always be decomposed in the following form

p(a, b|x, y) =
∫

dλµ(λ)p(a|x, λ)p(b|y, λ), (4)

where µ(λ) represents the probability of having a certain λ, and we thus
have that

∫
dλµ(λ) = 1. This means that on Alice’s side, the outcome a

depends on the choice of measurement x and on the shared variable λ, but
not on Bob’s measurement choice y. Similarly, on Bob’s side, the outcome b
depends only on y and λ. This type of correlations are referred to as local, in
the sense of Bell; equation (4) captures the notion of Bell locality. When test-
ing whether certain observed correlations can be explained by a common
cause (i.e. by a shared classical program, or variable, λ), we test whether
or not they admit a decomposition of the form (4). If such a decomposition
can be found, we say that the correlations are local (or Bell local). If no de-
composition of the form (4) exists, we say that the correlations are nonlocal
(in the sense of Bell).

Nonlocality can be detected via Bell inequalities. We have discussed the
simplest of such inequalities above, the CHSH Bell inequality. There exist
however many other Bell inequalities (in fact an infinite number of them).
Importantly, all correlations which are Bell local, i.e. of the form (4), will
satisfy all Bell inequalities. Correlations which are nonlocal, will violate at
least one Bell inequality.

1.3 Quantum nonlocality

Previously we have derived the CHSH Bell inequality (3) which holds for
any physical model in which the particles obey a predetermined strategy.
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We will see now that this inequality can be violated in quantum mechan-
ics. That is, if we perform judiciously chosen measurements on a pair of
entangled particles, we will get S > 2!

Let’s imagine that the source described in the above experiment pro-
duces pairs of photons which are entangled in polarization. More precisely
the state of the photon pair is given by

|ψ−〉 =
1√
2
(|01〉 − |10〉). (5)

The measurement devices of Alice and Bob then perform measurements of
the polarization characterized by vectors of the Bloch sphere. For a mea-
surement direction âi, the corresponding observable is Ai = âi ·~σ, where
~σ is the vector containing the 3 Pauli matrices. The first measurements of
Alice is given by ẑ, and the second by x̂. For Bob, the first measurements is
given by (ẑ + x̂)/

√
2, and the second by (ẑ− x̂)/

√
2.

We can now evaluate the quantity S. We have that

〈AiBj〉 = 〈ψ−|Ai ⊗ Bj|ψ−〉. (6)

With the above choice of observables, we get 〈A1B1〉 = 〈A1B2〉 = 〈A2B1〉 =
−〈A2B2〉 = − 1√

2
, and thus

S = 2
√

2 ≈ 2.83 > 2 (7)

Therefore we see that quantum predictions violate Bell’s inequality. We
are forced to conclude that these quantum correlations are nonlocal. No
classical mechanism can explain these correlations. On the one hand, a
classical signal is excluded, since the particles can be put in a space-like
separated configuration. On the other hand, a common cause is excluded
via Bell’s inequality violation. That is, the correlations are nonlocal in the
sense of Bell, and cannot be decomposed in the form (4). This phenomenon
is termed quantum nonlocality.

Following Bell’s discovery, few pioneering physicists underwent the
task of testing experimentally Bell’s inequality. This became possible thank
to immense progress in quantum optics. In the early 1970s, pairs of pho-
tons entangled in polarization could be experimentally produced, and the
polarization of single photons could be measured using polarizers and sin-
gle photon detectors. The main experimental confirmation came in 1982,
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when Alain Aspect and his team in Paris demonstrated violations of the
CHSH Bell inequality with 5 standard deviations. Since then, numerous
Bell experiments have been performed, using various physical systems,
such as photons, atoms, and superconducting qubits. Remarkably all of
these experiments demonstrated Bell inequality violations, and excellent
agreement with quantum predictions. This represents very strong evidence
that Nature is inherently nonlocal.

1.4 Maximal violation of the Bell’s inequality in quantum theory

In our example above, we have seen that by performing measurements
on a pair of entangled particles, we could violate the CHSH Bell inequal-
ity. In particular, we obtained S = 2

√
2. A natural question is whether

this is the largest possible violation in quantum mechanics, or if one could
achieve a larger value by choosing another entangled states and/or other
measurements. We will see now that this is not the case. The value of 2

√
2

represents the quantum limit for the CHSH Bell inequality. In other words,
for any quantum state and measurements, we have that S ≤ 2

√
2, which is

known as Tsirelson’s bound for the CHSH inequality.

This bound follows from the Hilbert space structure of quantum me-
chanics. It can be demonstrated as follows. Note first that the quantum
value for the CHSH expression of equation (3) can be written as tr(ρB),
where ρ ∈ Hd ⊗ Hd is an arbitrary bipartite quantum state, and where we
have defined the Bell operator

B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2 (8)
= A1 ⊗ (B1 + B2) + A2 ⊗ (B1 − B2). (9)

Note that the observables Ai and Bj are self-adjoint operators with eigen-
values ±1 acting on Hd. We are now interested in the largest eigenvalue of
B, which is given by the operator norm ||B|| (or spectral norm). It is con-
venient to first consider the quantity ||B2||. It is straightforward to show
that

||B2|| ≤ 4 + ||[A1, A2]|| ||[B1, B2]||. (10)

Then, using the relation ||[A1, A2]|| ≤ 2||A1|| ||A2|| ≤ 2 (since Ai has eigen-
values ±1), we get that ||B2|| ≤ 8, hence that ||B|| ≤ 2

√
2, which finishes

the proof.
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1.5 Greenberger-Horne-Zeilinger paradox

It is interesting to note that quantum nonlocality can in fact be demon-
strated without inequalities. Hence the demonstration is in some sense
simpler than the CHSH inequality that we have seen above. The price to
pay is that we need to consider a situation involving three observers.

Consider Alice, Bob, and Charlie, sharing the quantum state

|GHZ〉 = 1√
2
(|000〉+ |111〉) (11)

Each observer can now perform two possible measurements on his/her
particle. The first measurement A1 (and similarly for B1 and C1) is repre-
sented by the observable σx, the second A2 etc by the observable σy. It is
straightforward to check that for the GHZ state one has that

A1B1C1 = +1 (12)
A1B2C2 = −1 (13)
A2B1C2 = −1 (14)
A2B2C1 = −1 (15)

Let us now see that no a local model can explain the above behavior. As
we discussed above for the CHSH Bell inequality, the most general local
model attributes a certain value to all observables. Hence we must specify
A1 = ±1, A2 = ±1, B1 = ±1 etc. Now, it is easy to see for any possi-
ble choice, we will have a contradiction with the above statistics. Take for
instance the product of all left-hand side terms of the above 4 equations.
This product is necessarily equal to +1, since A2

1 = A2
2 = B2

1 = ... = 1.
However, the product of all right hand side terms is equal to -1. Hence, the
above quantum predictions are in full contradiction with those of any local
model.
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