2D Materials

an introduction starting from the discovery of graphene

Alberto Morpurgo UNIVERSITÉ DE GENÈVE

- Developments in material control now enable *perfect crystals only one or a few atom thick to be investigated*
- The very broad variety of 2D materials available gives *access to unexplored physical phenomena*
- *Realization of artificial materials* with properties engineered by design at the atomic scale

Philosophy: some idea is better than no idea

Novoselov/Geim

Natural Graphite

Exfoliation

Contact

Seeing one-atom layers one at a time

Relativistic electrons in graphene

Two inequivalent C atoms

 $H = t \sum_{i, i} A_{\vec{R}_i}^{\dagger} B_{\vec{R}_i + \vec{\delta}_j} + B_{\vec{R}_i + \vec{\delta}}^{\dagger} A_{\vec{R}_i}$ $|\psi_{k}\rangle = \left(\alpha_{k} \sum_{i} \left(e^{i\vec{k}\vec{R_{i}}} A^{\dagger}_{\vec{R_{i}}} \right) + \beta_{k} \sum_{i} \left(e^{i\vec{k}\vec{R_{i}}} B^{\dagger}_{\vec{R_{j}}} \right) \right) |0\rangle$ $|\psi_{k}\rangle = \sum_{i} e^{i\vec{k}\vec{R}_{i}} \begin{pmatrix} \alpha_{k}A_{\vec{R}_{i}}^{\dagger} \\ \beta_{k}B_{\vec{R}_{i}}^{\dagger} \end{pmatrix} |0\rangle \qquad spin$ Or

$H |\psi_k\rangle = E(k) |\psi_k\rangle$

Dirac Equation

$$v_{F}(-i\hbar\vec{\nabla})\cdot\vec{\sigma}\begin{pmatrix}\boldsymbol{\alpha}_{k}e^{i\vec{k}\cdot\vec{r}}\\\boldsymbol{\beta}_{k}e^{i\vec{k}\cdot\vec{r}}\end{pmatrix} = = E(k)\begin{pmatrix}\boldsymbol{\alpha}_{k}e^{i\vec{k}\cdot\vec{r}}\\\boldsymbol{\beta}_{k}e^{i\vec{k}\cdot\vec{r}}\end{pmatrix}$$

Direct Experimental manifestations

Novoselov/Geim/Kim2005 Graphene field-effect transistor E 4 source graphene k'x *k'y Si backgate

SiO₂ dielectric

drain

Resistivity

Quantum Hall effect

Dirac "peak"

Quantum Hall effect for dummies

Quasiclassical orbits

Landau levels =

quantization of cyclotron motion

Transport through edge channels

Band structure topology: basic idea

Think of Hamiltonian as a k-dependent magnetic field

Graphene
$$H = v_F \left(-i\hbar \vec{V}\right) \cdot \vec{\sigma} = \hbar v_F \begin{pmatrix} 0 & k_x - ik_y \\ k_x + ik_y & 0 \end{pmatrix}$$

 $H = \alpha \vec{B}(\vec{k}) \cdot \vec{\sigma}$
 $\vec{B}(\vec{k}) = (k_x, k_y, 0)$
 $if (\vec{k}) = (k_x, k_y, 0)$
 $if (\vec{k}) = (k_x, k_y, 0)$
 $H = A \begin{pmatrix} \Delta/2 + bk^2 & 0 \\ 0 & -\frac{\Delta}{2} - bk^2 \end{pmatrix} = A B_z \sigma_z$
 $\vec{B}(\vec{k}) = (0, 0, \Delta/2 + bk^2)$
 $if (\vec{k}) = (0, 0, \Delta/2 + bk^2)$

Non-trivial topology leads to states at the edges

Different thickness = different electronic systems

Gate control of electronic bands

Manipulating atomic crystals

P. Kim's group 2010

Moire superlattice for graphene on hBN

Contact with hBN generates periodic potential:

Graphene band structure modified

Cleaning 2D materials

A virtually infinite variety of systems

More than 50 monolayers demonstrated, including: Insulators, semiconductors, semi-metals, topological insulators, superconductors, charge density waves, ferromagnets, antiferromagnets...

Theory predicts that ~ 1000 different atomic crystals can be produced using similar techniques

Can work with materials not stable in air

Example: Crl₃ --- the first ferromagnetic monolayer

Thin crystals (even 50 nm) dissolve in a few minutes

Exfoliate/transfer/encapsulate in glove box with controlled atmosphere

The Grand Vision – already becoming reality

Examples of interesting physics in 2D materials

Goal: to illustrate the breadth of scope --- no details

- *Gate-induced superconductivity* in semiconducting transition metal dichalcogenides (TMDs)
- *Giant tunneling magnetoresistance* through 2D magnetic semiconductor tunnel barriers

• *Edge conduction* in monolayer WTe₂ (2D topological insulator)

Semiconducting transition metal dichalcogenides

$$MoS_2$$
, WS_2 , $MoSe_2$, WSe_2 , ...

- Honeycomb (= graphene),
- A/B atom different (=gapped),
- very strong SOI

Ionic liquid gating

Gate-induced superconductivity in MoS₂ ionic-liquid FETs

Persists in monolayers

Gate-induced superconductivity in 1L MoS₂ with reduced T_c and H_c

Tunneling spectroscopy

Multilayer graphene as tunneling electrode; MoS₂ *as tunnel barrier*

An idea of fabrication steps

Bottom G multilayer

Transfer MoS₂ multilayer Define tunneling contacts

Attach metallic contacts

& clean the MoS₂ surface

5

Tunneling spectroscopy of gate-induced superconductivity

Incomplete DOS suppression & "V-shaped" low-energy DOS Unconventional superconductivity

2D magnetic materials

Does magnetism persists in 2D magnetic materials? How can we probe it? Is there new physics?

We will discuss experiments on one compound: Crl₃

Magneto-optical Kerr effect

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bevin Huang¹*, Genevieve Clark²*, Efrén Navarro-Moratalla³*, Dahlia R. Klein³, Ran Cheng⁴, Kyle L. Seyler¹, Ding Zhong¹, Emma Schmidgall¹, Michael A. McGuire⁵, David H. Cobden¹, Wang Yao⁶, Di Xiao⁴, Pablo Jarillo-Herrero³ & Xiaodong Xu^{1,2}

270 | NATURE | VOL 546 | 8 JUNE 2017

Hysteretic Kerr rotation angle as expected for ferromagnets

But note: Kerr effect probes broken symmetries not magnetization

Exfoliating/processing/encapsulating in Glove box

Extremely unstable in air:

Thin crystals (even 50 nm) dissolve in a few minutes

CrI3 tunnel barriers

Thin Crl₃ as tunnel barrier between graphene contacts

Tunneling

Tunneling Magnetoresistance

Giant tunneling magneto-resistance: 100 x at B = 2T

For comparison: common tunneling spin-valves = 2 x Extracting magnetic phase diagram from tunneling magnetoresistance

Monolayer WTe₂: topological insulator with edge transport

The exploration of atomically thin crystals has only just started

This is a vast and largely unexplored field of research