Many facets of Polaritons

Marcia T. Portella Oberli

Advanced Semiconductors for Photonics and Electronics Lab

Microcavity polaritons arise from the strong coupling of cavity photons to quantum well excitons

J. Kasprzak et al., Nature (London) 443, 409 (2006).

Hamiltonian in the strong coupling:

$$\hat{H} = E_X \hat{x}^* \hat{x} + E_C \hat{c}^* \hat{c} + \hbar \Omega_R \left(\hat{x}^* \hat{c} + \hat{c}^* \hat{x} \right) \qquad \Rightarrow \hat{H} = \begin{pmatrix} E_C & \hbar \Omega_R \\ \hbar \Omega_R & E_X \end{pmatrix}$$

Diagonalization:

$$\hat{H} = E_{LP}\hat{a}^{\dagger}\hat{a} + E_{UP}\hat{b}^{\dagger}\hat{b}$$
 \leftarrow polariton basis

$$\Rightarrow E_{L,U} = \frac{1}{2} \left(E_C + E_X \mp \sqrt{\left(E_C - E_X \right)^2 + \left(2\Omega_R \right)^2} \right)$$

The eigenstates of the system are mixed exciton-photon quasi particles: polaritons

 $\Rightarrow \left(\begin{array}{c} \hat{a} \\ \hat{b} \end{array}\right) = \left(\begin{array}{c} X & C \\ -C & X \end{array}\right) \left(\begin{array}{c} \hat{x} \\ \hat{c} \end{array}\right)$

Hopfield coefficients $\hat{a} = X\hat{x} + C\hat{c}$ $|X|^2 + |C|^2 = 1$ $\hat{b} = C\hat{x} - X\hat{c}$

Features

- Polaritons are composite bosons
 - low effective mass provided by their photonic content
 - nonlinearity provided by the excitonic content
- Easily accessible : optical excitation and detection

Dynamics \implies **Gross-Pitaevskii equation**

Wavevector, µm⁻¹

$$i\hbar\frac{\partial\psi}{\partial t} = \left[E - \frac{\hbar^2}{2m}\nabla^2 + \alpha_1\left|\psi\right|^2 - i\gamma\right]\psi$$

Polaritons in planar microcavity

Cavity detuning

| polariton > = X | exciton > + C | photon >

Hopfield coefficients

excitonic fraction

$$\left|X\right|^{2} = \frac{1}{2} \left(1 + \frac{\delta}{\sqrt{\delta^{2} + 4\hbar^{2}\Omega^{2}}}\right)$$

photonic fraction

$$C|^{2} = \frac{1}{2} \left(1 - \frac{\delta}{\sqrt{\delta^{2} + 4\hbar^{2}\Omega^{2}}} \right)$$

Two spin states of polariton

Polariton has two spin projections: spin up and down

Spin up exciton couples σ^+ cavity photon polarization Spin down exciton couples σ^- cavity photon polarization

Polariton Spinor Gross-Pitaevskii equation

$$i\hbar\dot{\psi}_{\pm} = \left[E_{\pm} - \frac{\hbar^{2}}{2m}\nabla^{2} + \alpha_{1}\left|\psi_{\pm}\right|^{2} + \alpha_{2}\left|\psi_{\pm}\right|^{2} - i\gamma\right]\psi_{\pm}$$

$$\downarrow$$

$$\Delta E$$

$$\Delta E$$

Repulsive polariton interaction with parallel spins

Attractive polariton interaction with anti-parallel spins

Spectrally resolved pump-probe spectroscopy

Pump-probe spectroscopy

Spectrally resolved pump-probe spectroscopy

Pump-probe spectroscopy

Sample

Polariton spinor interactions

Pump probe signal

Polariton spinor interactions

Polariton spinor interactions

Deviation from the Hopfield dependence

Feshbach resonance

Feshbach resonance in cold atoms

A Feshbach resonance occurs when the energy of two interacting free atoms comes to resonance with a molecular bound state.

S. Inouye et al., Nature (London) 392, 151 (1998).

Feshbach resonance in microcavity polaritons

By tuning the relative energy

Feshbach resonance in microcavity polaritons

N Takemura et al., Nature Physics 10, 500 (2014)

Feshbach resonance in microcavity polaritons

N Takemura et al., Nature Physics 10, 500 (2014)

Feshbach resonance in microcavity polaritons

N Takemura et al., Nature Physics 10, 500 (2014)

Biexciton effect on opposit spin polariton interaction

DBR

The scheme to induce biexcitonic Feshbach resonance

Below BX state

The scheme to induce biexcitonic Feshabach resonance

The pump and probe experiment

N Takemura *et al.*, Nature Physics 10, 500 (2014) N Takemura *et al.*, Phys. Rev. B 95, 205303 (2017)

characteristic shape of resonant scattering

- ✓ dispersive shape
- change of the magnitude and sign of the interaction
- ✓ absorption maximum at resonance region

characteristic shape of resonant scattering

- ✓ dispersive shape
- change of the magnitude and sign of the interaction
- ✓ absorption maximum at resonance region

Control the strength and nature of the interaction

The scheme to induce cross Feshbach resonance

The pump and probe experiment

Dynamics of the cross Feshbach resonance

Cavity detuning in the vicinity of the cross FR $\delta = -1.2meV$

Scheme for generating pairs of entangled photons

Pair of photons entangled in momentum and polarization

LP(-k) 🔶 LP(-k)

Scheme for generating pairs of entangled photons

Pair of photons entangled in momentum and polarization LP(-k) LP(-k)

Pair of photons entangled in energy and polarization

UP(k=0) 🔶 🚽 LP(k=0)

H. Oka et al, Appl. Phys. Lett. 94, 111113 (2009)

Scheme for generating pairs of entangled photons

Pair of photons entangled in momentum and polarization $LP(-k)^{\uparrow} \downarrow LP(-k)$

Pair of photons entangled in energy and polarization

UP(k=0) 🛉 🚽 LP(k=0)

The cross FR situation will permit the entangled photon pairs to be isolated from the transmitted laser beams

H. Oka et al, Appl. Phys. Lett. 94, 111113 (2009)

Confined zero-dimensional polaritons

Confined zero-dimensional polaritons

Polariton bistability

H. Abbaspour et al., Phys. Rev. Lett. 113, 057401 (2014)

Polariton spinor bistability

Polariton spinor bistability

Polariton spinor bistability

Spin switch

Laser power: 7.8 mW Emission polarization: $\rho = \frac{I_{\sigma^+} - I_{\sigma^-}}{I_{\sigma^+} + I_{\sigma^-}}$

R. Cerna *et al.*, Nat. Commun 4, 2008 (2013) R. Cerna , Thèse 5014 EPFL 2011

Spin memory

Confined zero-dimensional polaritons

Confined zero-dimensional polaritons

Spatial multistability

Spatial multistability

Spatial multistability

(b) (c) (d) (a) 10^{2} 0.5 10^{3} 10^{4} 0.5 5 5 1.4840 1.4840 0 (c) 1.4835 -5 -5 1.4835 Energy (eV) 5 5 Ε, y (µm) y (µm) Ε, 0 .4830 -5 -5 5 5 1.4825-1.4825-1.4820 1.4820 -5 -5 -5 -5 5 5-5 5 5-5 x (μm) 0 0 0 -5 0 0 0 x (µm) x (µm) x (µm) Transmitted power (µW) 10 Ш IV 0 0.1 10^{2} 10^{0} 10^{1}

Excitation power (mW)

Botton of the bistability curve

Top of the bistability curve

C. Oullet-Plamondon *et* al., Phys. Rev. B 93, 085313 (2016)

Coupled mesas

Coupled 2µm mesas single 3 µm 2.5 μm 2 µm <> 1.475 -1.470 ->₀ ш^{1.465 -} meV 0 1.460 -2 -4 -2 0 4 -4 -2 0 2 -4 -2 0 2 4 -4 -2 2 4 0 **x**, μ**m x**, μ**m x**, μ**m x**, μ**m** 0 å T Time, ps 10 -9.2 20 30 -2 -2 2 2 -2 2 -4 0 -4 -2 2 -4 0 -4 0 4 0 4 4 4

x, μ**m**

x, μ**m**

x, μ**m**

x, μ**m**

Polariton Josephson junction

$$\hat{H} = \sum_{k=L,R} \left[\hbar \omega_c \hat{a}_k^* \hat{a}_k + U \hat{a}_k^* \hat{a}_k^* \hat{a}_k \hat{a}_k \right] - J \left(\hat{a}_L^* \hat{a}_R + \hat{a}_R^* \hat{a}_L \right)$$

Polariton Josephson junction

$$\hat{H} = \sum_{k=L,R} \left[\hbar \omega_c \hat{a}_k^{\dagger} \hat{a}_k + U \hat{a}_k^{\dagger} \hat{a}_k^{\dagger} \hat{a}_k \hat{a}_k \right] - J \left(\hat{a}_L^{\dagger} \hat{a}_R + \hat{a}_R^{\dagger} \hat{a}_L \right)$$

Periodic squeezing in a polariton Josephson junction

A. Adiyatullin et al., Nat. Commun. 8, (2017)

Periodic squeezing in a polariton Josephson junction

Model: H. Flayac and V. Savona, PRA 95, 043838 (2017)

$$\hat{H} = \sum_{k=L,R} \left[\hbar \omega_c \hat{a}_k^* \hat{a}_k + U \hat{a}_k^* \hat{a}_k^* \hat{a}_k \hat{a}_k \right] - J \left(\hat{a}_L^* \hat{a}_R + \hat{a}_R^* \hat{a}_L \right) \\
+ \sum_{k=L,R} \left[P_k(t) \hat{a}_k^* + P_k^*(t) \hat{a}_k \right] \\
Polariton operators: \hat{a}_k = \alpha_k + \delta \hat{a}_k \\
\alpha_k = \langle \hat{a}_k \rangle \\
coherent mean field operator \\
\Rightarrow g^{(2)}(0) \Rightarrow \cos(\theta - 2\varphi) \\
Squeezing operator \rightarrow \hat{S} = \exp\left[\xi * \hat{a}^2 - \xi \hat{a}^{+2} \right] \\
Squeezed coherent state \rightarrow \left| \xi, \alpha \right\rangle = \hat{S} \left| \alpha \right\rangle \\
\sum_{k=L,R} \left[\frac{\chi_k}{2} + \frac{\chi_k}{$$

Towards polariton quantum blockade

Ferretti & Gerace, PRB85, 033303 (2012)

Strong nonlinearity U_{nl} > γ The two-polariton state is shifted by $2U_{nl}$ > 2γ

The presence of a single polariton in the cavity is able to block the entrance of the second one

Towards polariton quantum blockade

Ferretti & Gerace, PRB85, 033303 (2012) Strong nonlinearity $U_{nl} > \gamma$ The two-polariton state is shifted by $2U_{nl} > 2\gamma$

The presence of a single polariton in the cavity is able to block the entrance of the second one

I. Carusotto & C: Ciuti, Rev. Mod. Phys. 85, 299 (2013)

Fibre microcavity

G. Munoz-Matutano et al, Nat. Mat. 18, 21

Sample with smaller diameter: ⇒ smaller volume ⇒ stronger interaction

$$g^{2}(\mathbf{0}) = \frac{1}{\left(1 + 4\left(\frac{U}{\gamma}\right)^{2}\right)}$$

Many facets of Polaritons

| polariton > = Ux | exciton > + Uc | photon >

 Light effective mass – photonic component
 Nonlinear interaction – excitonic component Spin-dependent interaction

Stochastic resonance and Spinor Stochastic resonance

H. Abbaspour *et al.,* Phys. Rev. Lett. 113, 057401 (2014). H. Abbaspour *et al.*, Phys. Rev. B 91, 155307 (2015).

Bose-Einstein condensation

J. Kasprzak et al., Nature (London) 443, 409 (2006).

(a) (b) (b)

Polariton lattices

T. Jacqmin et al, Phys. Rev. Lett. 112, 116402 (2015)C. Ouellet-Plamondon, Thèse 7603 EPFL

Superfluidity

A. Amo *et. al.*, Nature Phys. **5**, 805 (2009).
V. Kohnle *et. al.*, Phys. Rev. Lett. **106**, 255302 (2011).

Spin switching

A. Amo et. al., Nature Photon. 4, 361 (2010).

Many facets of Polaritons

Feshbach resonances

Morteza Navadeh Toupchi Naotomo Takemura Stéphane Trebaol Mitchell Anderson

Bistability

Roland Cerna Hadis Abbaspour Claudéric Ouellet-Plamondon Stéphane Trebaol Grégory Sallen

Superfluidity

Verena Kohnle Yoan Léger

Polariton squeezing in JJ

Albert Adiyatullin Mitchell Anderson

Samples

François Morier-Genoud

Fauzia Jabeen

Clauderic Oeullet-Plamondon Grégory Sallen Morteza Navadeh Toupchi Albert Adiyatullin

🌒 Daniel Oberli

🔵 Benoît Deveaud