Long distance and high rate quantum key distribution.

Hugo Zbinden GAP – Quantum Technologies

Is the quantum computer a threat for information security?

IBM, 20 qubits

Classical Cryptography

A) Based on Complexity DES, AES (secret key)

RSA (public key)

Security unproven

One-way functions Integer factorisation $107 \times 53 = x$ $5671 = y \times z$

B) Based on Information Theory one time pad (Vernam)

plaintext : 00101001001001110100001101001 key: +101011011001010100111010101 cyphertext: 1000010010010101111011011010

security proven

problem: key distribution

Quantum Key Distribution

- Quantum Crpytography is not a new coding method
- Send key with individual photons (quantum states)
- The eavesdropper may not measure without perturbation (Heisenbergs uncertainty principle)
- Eavesdropping can be detected by Alice and Bob!

QKD is proven information theoretically secure!

Quantum Key Distribution

Assumption: secure perimeters for Alice and Bob

BB84 protocol (Bennett, Brassard, 1984)

Eavesdropping (intercept-resend)

Error with 25 % probability

 $I_{AE} = 2 \ QBER \ (quantum \ bit error \ rate)$

Eve attacks: information curves

The steps to a secret key

+ Authentication!!!

Smolin and Bennett IBM 1989

Swiss QCRYPT project (2013)

Editors' Suggestion

Featured in Physics

Secure Quantum Key Distribution over 421 km of Optical Fiber

Alberto Boaron,^{1,*} Gianluca Boso,¹ Davide Rusca,¹ Cédric Vulliez,¹ Claire Autebert,¹ Misael Caloz,¹ Matthieu Perrenoud,¹ Gaëtan Gras,^{1,2} Félix Bussières,¹ Ming-Jun Li,³ Daniel Nolan,³ Anthony Martin,¹ and Hugo Zbinden¹ ¹Group of Applied Physics, University of Geneva, Chemin de Pinchat 22, 1211 Geneva 4, Switzerland ²ID Quantique SA, Chemin de la Marbrerie 3, 1227 Carouge, Switzerland ³Corning Incorporated, Corning, New York 14831, USA

(Received 10 July 2018; published 5 November 2018)

New simple and efficient QKD protocol

Ultralow-loss fibers Supeconducting detectors developed in Geneva

JE GENEVE

Time-bin encoding BB84

a) Protocol

- Time-bin encoding
- Decoy-state method

basis, bit	state	μ_1	μ_2	μ_3
Z , 0	0 angle			
Z , 1	$ 1\rangle$			
X , 0	$ +\rangle$			
X , 1	$ -\rangle$			

Phys. Rev. A72, 012326 (2005)

a) Protocol

- Time-bin encoding
- Decoy-state method

basis, bit	state	μ_1	μ_2	μ_3
Z , 0	0 angle			
Z , 1	$ 1\rangle$			
X , 0	$ +\rangle$			
X , 1	$\left -\right\rangle$			

Finite key analysis:

For limited block size, using only two different average energies is advantageous!

 $\epsilon = 10^{-9}$

a) Protocol

- Time-bin encoding
- Decoy-state method

basis, bit	state	μ_1	μ_2	μ_3
Z , 0	0 angle			
Z , 1	1 angle		_	
X, 0	$ +\rangle$			
X, 1	$\left -\right\rangle$			

4 states, 4 outcomes \rightarrow 3 states, 3 outcomes Phys. Rev. A 74, 042342 (2006)

 $\mu_1 \approx 0.5$

Rusca et. al, Security proof for a simplified Bennett-Brassard 1984 quantum-key-distribution protocol, Phys. Rev. A 98, 052336 (2018)

Simple Setup (with a single intensity modulator)

b) all fibre, high repetition rate source

Alice and Bob are FPGA controlled:

- Synchronization real-time adjustement of:
 - interferometer phase
 - detector timing
- Generate random bits QRNG + expansion
- High-speed integrated intensity modulator: 5 GHz
- Sifting
- Error correction
- Privacy amplification
- Authentication

c) quantum channel: ultra low-loss fibres

Corning ULL-28® ultralow-loss fibre: 0.16 dB/km Attenuation including connectors and splices: 0.17 dB/km

d) detectors

Superconducting nanowire single-photon detectors Amorphous molybdenum silicide Temperature: 0.8 K

Appl. Phys. Lett. **112**, 061103 (2018)

Performance of our SNSPD

Detector contributions to QBER

- Timing jitter
- darkcounts

Dark counts: dominated by black-body radiation

- No filtering
- +Fiber spool (cold)
- + WDM filter
- < 1 cts/s
- ~50% efficiency

Results: SKR vs distance

Ideal system

- BB84 with decoy state
- 2.5 GHz repetition rate
- No detector noise
- 100% detection efficiency
- Same block size than exp. points

⁽¹⁾ BB84, Fröhlich et al., Optica 4, 163 (2017), (2) COW, Korzh et al., Nat. Phot. 9, 163 (2015)
(3) MDI, Yin et al. Phys. Rev. Lett. 117, 190501 (2016)

Twin field QKD

In fact, it's a huge interferometer!

- Stabilisation!
- Synchronisation!
- Recent feasability experiment: 500 km

Quantum repeater

Create remote entanglement independently for each link. Extend by swapping

Direct transmission
$$T \sim \left(\frac{1}{\eta_t}\right)^n$$

Repeater
$$T \sim \frac{1}{\eta_t}$$

Requires heralded entanglement creation, storage and swapping of entanglement

Talk de Mikael Afzelius demain!

Science MAAAS

QUANTUM OPTICS

Satellite-based entanglement distribution over 1200 kilometers

Juan Yin,^{1,2} Yuan Cao,^{1,2} Yu-Huai Li,^{1,2} Sheng-Kai Liao,^{1,2} Liang Zhang,^{2,3} Ji-Gang Ren,^{1,2} Wen-Qi Cai,^{1,2} Wei-Yue Liu,^{1,2} Bo Li,^{1,2} Hui Dai,^{1,2} Guang-Bing Li,^{1,2} Qi-Ming Lu,^{1,2} Yun-Hong Gong,^{1,2} Yu Xu,^{1,2} Shuang-Lin Li,^{1,2} Feng-Zhi Li,^{1,2} Ya-Yun Yin,^{1,2} Zi-Qing Jiang,³ Ming Li,³ Jian-Jun Jia,³ Ge Ren,⁴ Dong He,⁴ Yi-Lin Zhou,⁵ Xiao-Xiang Zhang,⁶ Na Wang,⁷ Xiang Chang,⁸ Zhen-Cai Zhu,⁵ Nai-Le Liu,^{1,2} Yu-Ao Chen,^{1,2} Chao-Yang Lu,^{1,2} Rong Shu,^{2,3} Cheng-Zhi Peng,^{1,2*} Jian-Yu Wang,^{2,3*} Jian-Wei Pan^{1,2*}

http://science.sciencemag.org/content/356/6343/1140

SPDC source: 810 nm6 MHz pair generation rate

Total loss: ~65dB **Average coincidence count rate: 1Hz 275s coverage time** S=2.37 ± 0.09

Finite key analysis: Impossible to extract a key with small ϵ

Satellite to ground QKD

 just one downlink with decoystate faint laser pulses (polarisation BB84)

Results

1-10 kb/s during 250s per passage

Conclusions

- QKD over 400 500 km
- Bit rates over 10Mbit/s @ < 50km

Outlook:

- Make it smaller, make it cheaper (integrated optics)
- Integrate it in telecom network
- Find many applications!

